import numpy as np, scipy, matplotlib.pyplot as plt, pandas as pd, seaborn as sns
sns.set(style='whitegrid')
import IPython.display as ipd
%run detect_peaks.py
plt.rcParams['figure.figsize'] = [10, 5]
%matplotlib inline
data = pd.DataFrame.from_csv('./HackLab_Vol2_Excerpts/HackLab_Vol2_Excerpts/Vol2_P2_Exrpt.csv')
data = data.drop('Time',axis = 1)
data
p1 | p2 | p3 | p4 | p5 | p6 | m1 | m2 | m3 | m4 | |
---|---|---|---|---|---|---|---|---|---|---|
Sample | ||||||||||
471 | 1848 | 1601 | 1865 | 1614 | 2092 | 1879 | 1999 | 2023 | 1751 | 1878 |
472 | 1855 | 1587 | 1866 | 1605 | 2084 | 1880 | 1994 | 2014 | 1763 | 1880 |
473 | 1863 | 1577 | 1866 | 1600 | 2090 | 1885 | 1993 | 2012 | 1764 | 1877 |
474 | 1868 | 1561 | 1870 | 1594 | 2091 | 1888 | 1991 | 2005 | 1761 | 1868 |
475 | 1874 | 1556 | 1874 | 1587 | 2086 | 1894 | 1993 | 2060 | 1750 | 1863 |
476 | 1880 | 1552 | 1889 | 1583 | 2089 | 1901 | 1995 | 2096 | 1742 | 1851 |
477 | 1887 | 1547 | 1901 | 1586 | 2088 | 1897 | 1995 | 2081 | 1737 | 1839 |
478 | 1886 | 1543 | 1915 | 1578 | 2085 | 1896 | 1995 | 2089 | 1720 | 1854 |
479 | 1883 | 1543 | 1926 | 1578 | 2089 | 1890 | 2001 | 2096 | 1710 | 1892 |
480 | 1882 | 1541 | 1935 | 1580 | 2091 | 1891 | 1996 | 2093 | 1712 | 1947 |
481 | 1881 | 1537 | 1941 | 1580 | 2086 | 1888 | 1990 | 2077 | 1699 | 1960 |
482 | 1879 | 1540 | 1944 | 1580 | 2091 | 1883 | 1993 | 2068 | 1695 | 1955 |
483 | 1871 | 1535 | 1945 | 1580 | 2094 | 1883 | 2002 | 2055 | 1694 | 1955 |
484 | 1865 | 1533 | 1939 | 1583 | 2092 | 1882 | 2011 | 2044 | 1686 | 1991 |
485 | 1859 | 1531 | 1933 | 1584 | 2087 | 1878 | 2026 | 2039 | 1678 | 2031 |
486 | 1847 | 1540 | 1915 | 1585 | 2090 | 1879 | 2038 | 2036 | 1655 | 2037 |
487 | 1838 | 1571 | 1904 | 1581 | 2085 | 1877 | 2045 | 2019 | 1638 | 2014 |
488 | 1832 | 1609 | 1892 | 1590 | 2084 | 1876 | 2053 | 2005 | 1625 | 1975 |
489 | 1833 | 1647 | 1884 | 1600 | 2089 | 1877 | 2065 | 1989 | 1606 | 1940 |
490 | 1830 | 1686 | 1875 | 1604 | 2082 | 1876 | 2065 | 1968 | 1596 | 1916 |
491 | 1829 | 1717 | 1874 | 1614 | 2088 | 1873 | 2068 | 1957 | 1584 | 1879 |
492 | 1830 | 1724 | 1868 | 1624 | 2089 | 1870 | 2074 | 1959 | 1579 | 1856 |
493 | 1827 | 1734 | 1872 | 1632 | 2080 | 1872 | 2078 | 1961 | 1578 | 1848 |
494 | 1822 | 1759 | 1868 | 1639 | 2084 | 1872 | 2078 | 1955 | 1576 | 1851 |
495 | 1822 | 1792 | 1870 | 1633 | 2090 | 1875 | 2067 | 1950 | 1580 | 1848 |
496 | 1830 | 1828 | 1869 | 1627 | 2081 | 1874 | 2052 | 1950 | 1579 | 1859 |
497 | 1842 | 1845 | 1870 | 1622 | 2083 | 1874 | 2040 | 1951 | 1583 | 1870 |
498 | 1847 | 1848 | 1870 | 1614 | 2095 | 1874 | 2027 | 1947 | 1590 | 1888 |
499 | 1844 | 1845 | 1870 | 1603 | 2081 | 1870 | 2015 | 1939 | 1587 | 1931 |
500 | 1846 | 1836 | 1870 | 1599 | 2085 | 1869 | 2001 | 1927 | 1588 | 1975 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1842 | 1715 | 1650 | 1902 | 1657 | 2103 | 1888 | 2013 | 1859 | 1822 | 1949 |
1843 | 1711 | 1663 | 1906 | 1670 | 2110 | 1893 | 2014 | 1849 | 1788 | 1918 |
1844 | 1716 | 1681 | 1915 | 1674 | 2107 | 1901 | 2014 | 1845 | 1772 | 1889 |
1845 | 1718 | 1694 | 1925 | 1683 | 2111 | 1906 | 2007 | 1837 | 1754 | 1880 |
1846 | 1726 | 1712 | 1927 | 1681 | 2111 | 1912 | 2007 | 1835 | 1753 | 1881 |
1847 | 1733 | 1721 | 1938 | 1676 | 2098 | 1912 | 2007 | 1836 | 1753 | 1874 |
1848 | 1744 | 1724 | 1941 | 1675 | 2105 | 1906 | 2005 | 1836 | 1742 | 1856 |
1849 | 1758 | 1734 | 1947 | 1672 | 2126 | 1904 | 2009 | 1829 | 1720 | 1839 |
1850 | 1764 | 1734 | 1954 | 1669 | 2100 | 1903 | 2009 | 1823 | 1704 | 1838 |
1851 | 1772 | 1722 | 1960 | 1664 | 2118 | 1896 | 2012 | 1824 | 1705 | 1851 |
1852 | 1786 | 1706 | 1954 | 1662 | 2118 | 1894 | 2013 | 1825 | 1698 | 1843 |
1853 | 1797 | 1694 | 1947 | 1660 | 2098 | 1894 | 2013 | 1821 | 1692 | 1840 |
1854 | 1806 | 1666 | 1933 | 1654 | 2112 | 1888 | 2010 | 1821 | 1678 | 1835 |
1855 | 1817 | 1637 | 1919 | 1645 | 2128 | 1888 | 2012 | 1817 | 1670 | 1827 |
1856 | 1830 | 1616 | 1909 | 1640 | 2121 | 1884 | 2017 | 1823 | 1668 | 1845 |
1857 | 1843 | 1602 | 1902 | 1636 | 2123 | 1878 | 2030 | 1825 | 1665 | 1862 |
1858 | 1858 | 1597 | 1893 | 1626 | 2117 | 1875 | 2048 | 1826 | 1672 | 1870 |
1859 | 1862 | 1591 | 1887 | 1616 | 2102 | 1874 | 2069 | 1827 | 1675 | 1879 |
1860 | 1866 | 1596 | 1887 | 1605 | 2115 | 1875 | 2081 | 1821 | 1681 | 1888 |
1861 | 1868 | 1595 | 1884 | 1595 | 2127 | 1876 | 2085 | 1816 | 1687 | 1893 |
1862 | 1868 | 1595 | 1878 | 1599 | 2103 | 1875 | 2091 | 1810 | 1688 | 1890 |
1863 | 1862 | 1598 | 1877 | 1596 | 2117 | 1874 | 2092 | 1799 | 1683 | 1894 |
1864 | 1862 | 1600 | 1873 | 1592 | 2121 | 1870 | 2103 | 1793 | 1691 | 1886 |
1865 | 1859 | 1600 | 1871 | 1588 | 2098 | 1871 | 2105 | 1783 | 1696 | 1875 |
1866 | 1856 | 1596 | 1872 | 1588 | 2103 | 1865 | 2098 | 1773 | 1700 | 1867 |
1867 | 1843 | 1598 | 1877 | 1595 | 2102 | 1865 | 2083 | 1762 | 1700 | 1860 |
1868 | 1827 | 1599 | 1878 | 1596 | 2089 | 1862 | 2068 | 1750 | 1709 | 1851 |
1869 | 1815 | 1600 | 1890 | 1604 | 2083 | 1865 | 2059 | 1728 | 1694 | 1845 |
1870 | 1805 | 1599 | 1898 | 1612 | 2091 | 1866 | 2048 | 1724 | 1684 | 1836 |
1871 | 1793 | 1601 | 1908 | 1621 | 2084 | 1865 | 2040 | 1717 | 1668 | 1844 |
1401 rows × 10 columns
f,ax = plt.subplots(5,2,figsize = (32,20), sharex=True, sharey=True,)
ax[0,0].plot(data['p1'],color = 'red')
ax[1,0].plot(data['p2'],color = 'orange')
ax[2,0].plot(data['p3'],color = 'yellow')
ax[3,0].plot(data['p4'],color = 'green')
ax[4,0].plot(data['p5'],color = 'brown')
ax[0,1].plot(data['p6'],color = 'blue')
ax[1,1].plot(data['m1'],color = 'grey')
ax[2,1].plot(data['m2'],color = 'purple')
ax[3,1].plot(data['m3'],color = 'black')
ax[4,1].plot(data['m4'],color = 'black')
[<matplotlib.lines.Line2D at 0x7f90fd832950>]
%run detect_peaks.py
<matplotlib.figure.Figure at 0x7f90fdfa5450>
detect_peaks(data['p1'],show=True)
detect_peaks(data['p2'],show=True)
detect_peaks(data['p3'],show=True)
detect_peaks(data['p4'],show=True)
detect_peaks(data['p5'],show=True)
detect_peaks(data['p6'],show=True)
array([ 5, 9, 15, 18, 22, 24, 37, 51, 62, 73, 79, 85, 88, 91, 94, 97, 103, 112, 119, 122, 141, 160, 162, 167, 177, 191, 200, 202, 204, 211, 213, 216, 229, 240, 244, 247, 251, 253, 258, 269, 284, 286, 289, 293, 307, 320, 323, 330, 334, 337, 350, 366, 369, 372, 374, 385, 400, 404, 415, 432, 439, 441, 445, 448, 450, 470, 474, 493, 495, 501, 507, 510, 520, 525, 527, 530, 536, 539, 542, 547, 552, 555, 564, 566, 573, 577, 580, 590, 603, 608, 610, 613, 617, 619, 622, 625, 632, 634, 640, 643, 647, 651, 655, 660, 663, 687, 701, 706, 720, 736, 742, 748, 752, 762, 771, 784, 786, 802, 819, 824, 830, 839, 841, 850, 857, 860, 863, 867, 869, 876, 885, 887, 889, 895, 907, 916, 920, 923, 926, 930, 941, 951, 958, 962, 970, 973, 976, 981, 992, 995, 998, 1006, 1008, 1019, 1022, 1027, 1029, 1033, 1039, 1042, 1051, 1061, 1075, 1078, 1081, 1095, 1106, 1110, 1126, 1134, 1137, 1144, 1148, 1156, 1163, 1171, 1174, 1179, 1187, 1190, 1199, 1203, 1209, 1211, 1215, 1217, 1224, 1234, 1240, 1243, 1254, 1263, 1271, 1277, 1287, 1299, 1303, 1309, 1316, 1322, 1325, 1328, 1331, 1334, 1337, 1346, 1350, 1355, 1361, 1375, 1390, 1394, 1399])