import numpy as np, scipy, matplotlib.pyplot as plt, pandas as pd, seaborn as sns
sns.set(style='whitegrid')
import IPython.display as ipd
%run detect_peaks.py
plt.rcParams['figure.figsize'] = [10, 5]
%matplotlib inline
data = pd.DataFrame.from_csv('./HackLab_Vol2_Excerpts/HackLab_Vol2_Excerpts/Vol2_P2_Exrpt.csv')
data = data.drop('Time',axis = 1)
data
| p1 | p2 | p3 | p4 | p5 | p6 | m1 | m2 | m3 | m4 | |
|---|---|---|---|---|---|---|---|---|---|---|
| Sample | ||||||||||
| 471 | 1848 | 1601 | 1865 | 1614 | 2092 | 1879 | 1999 | 2023 | 1751 | 1878 | 
| 472 | 1855 | 1587 | 1866 | 1605 | 2084 | 1880 | 1994 | 2014 | 1763 | 1880 | 
| 473 | 1863 | 1577 | 1866 | 1600 | 2090 | 1885 | 1993 | 2012 | 1764 | 1877 | 
| 474 | 1868 | 1561 | 1870 | 1594 | 2091 | 1888 | 1991 | 2005 | 1761 | 1868 | 
| 475 | 1874 | 1556 | 1874 | 1587 | 2086 | 1894 | 1993 | 2060 | 1750 | 1863 | 
| 476 | 1880 | 1552 | 1889 | 1583 | 2089 | 1901 | 1995 | 2096 | 1742 | 1851 | 
| 477 | 1887 | 1547 | 1901 | 1586 | 2088 | 1897 | 1995 | 2081 | 1737 | 1839 | 
| 478 | 1886 | 1543 | 1915 | 1578 | 2085 | 1896 | 1995 | 2089 | 1720 | 1854 | 
| 479 | 1883 | 1543 | 1926 | 1578 | 2089 | 1890 | 2001 | 2096 | 1710 | 1892 | 
| 480 | 1882 | 1541 | 1935 | 1580 | 2091 | 1891 | 1996 | 2093 | 1712 | 1947 | 
| 481 | 1881 | 1537 | 1941 | 1580 | 2086 | 1888 | 1990 | 2077 | 1699 | 1960 | 
| 482 | 1879 | 1540 | 1944 | 1580 | 2091 | 1883 | 1993 | 2068 | 1695 | 1955 | 
| 483 | 1871 | 1535 | 1945 | 1580 | 2094 | 1883 | 2002 | 2055 | 1694 | 1955 | 
| 484 | 1865 | 1533 | 1939 | 1583 | 2092 | 1882 | 2011 | 2044 | 1686 | 1991 | 
| 485 | 1859 | 1531 | 1933 | 1584 | 2087 | 1878 | 2026 | 2039 | 1678 | 2031 | 
| 486 | 1847 | 1540 | 1915 | 1585 | 2090 | 1879 | 2038 | 2036 | 1655 | 2037 | 
| 487 | 1838 | 1571 | 1904 | 1581 | 2085 | 1877 | 2045 | 2019 | 1638 | 2014 | 
| 488 | 1832 | 1609 | 1892 | 1590 | 2084 | 1876 | 2053 | 2005 | 1625 | 1975 | 
| 489 | 1833 | 1647 | 1884 | 1600 | 2089 | 1877 | 2065 | 1989 | 1606 | 1940 | 
| 490 | 1830 | 1686 | 1875 | 1604 | 2082 | 1876 | 2065 | 1968 | 1596 | 1916 | 
| 491 | 1829 | 1717 | 1874 | 1614 | 2088 | 1873 | 2068 | 1957 | 1584 | 1879 | 
| 492 | 1830 | 1724 | 1868 | 1624 | 2089 | 1870 | 2074 | 1959 | 1579 | 1856 | 
| 493 | 1827 | 1734 | 1872 | 1632 | 2080 | 1872 | 2078 | 1961 | 1578 | 1848 | 
| 494 | 1822 | 1759 | 1868 | 1639 | 2084 | 1872 | 2078 | 1955 | 1576 | 1851 | 
| 495 | 1822 | 1792 | 1870 | 1633 | 2090 | 1875 | 2067 | 1950 | 1580 | 1848 | 
| 496 | 1830 | 1828 | 1869 | 1627 | 2081 | 1874 | 2052 | 1950 | 1579 | 1859 | 
| 497 | 1842 | 1845 | 1870 | 1622 | 2083 | 1874 | 2040 | 1951 | 1583 | 1870 | 
| 498 | 1847 | 1848 | 1870 | 1614 | 2095 | 1874 | 2027 | 1947 | 1590 | 1888 | 
| 499 | 1844 | 1845 | 1870 | 1603 | 2081 | 1870 | 2015 | 1939 | 1587 | 1931 | 
| 500 | 1846 | 1836 | 1870 | 1599 | 2085 | 1869 | 2001 | 1927 | 1588 | 1975 | 
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 
| 1842 | 1715 | 1650 | 1902 | 1657 | 2103 | 1888 | 2013 | 1859 | 1822 | 1949 | 
| 1843 | 1711 | 1663 | 1906 | 1670 | 2110 | 1893 | 2014 | 1849 | 1788 | 1918 | 
| 1844 | 1716 | 1681 | 1915 | 1674 | 2107 | 1901 | 2014 | 1845 | 1772 | 1889 | 
| 1845 | 1718 | 1694 | 1925 | 1683 | 2111 | 1906 | 2007 | 1837 | 1754 | 1880 | 
| 1846 | 1726 | 1712 | 1927 | 1681 | 2111 | 1912 | 2007 | 1835 | 1753 | 1881 | 
| 1847 | 1733 | 1721 | 1938 | 1676 | 2098 | 1912 | 2007 | 1836 | 1753 | 1874 | 
| 1848 | 1744 | 1724 | 1941 | 1675 | 2105 | 1906 | 2005 | 1836 | 1742 | 1856 | 
| 1849 | 1758 | 1734 | 1947 | 1672 | 2126 | 1904 | 2009 | 1829 | 1720 | 1839 | 
| 1850 | 1764 | 1734 | 1954 | 1669 | 2100 | 1903 | 2009 | 1823 | 1704 | 1838 | 
| 1851 | 1772 | 1722 | 1960 | 1664 | 2118 | 1896 | 2012 | 1824 | 1705 | 1851 | 
| 1852 | 1786 | 1706 | 1954 | 1662 | 2118 | 1894 | 2013 | 1825 | 1698 | 1843 | 
| 1853 | 1797 | 1694 | 1947 | 1660 | 2098 | 1894 | 2013 | 1821 | 1692 | 1840 | 
| 1854 | 1806 | 1666 | 1933 | 1654 | 2112 | 1888 | 2010 | 1821 | 1678 | 1835 | 
| 1855 | 1817 | 1637 | 1919 | 1645 | 2128 | 1888 | 2012 | 1817 | 1670 | 1827 | 
| 1856 | 1830 | 1616 | 1909 | 1640 | 2121 | 1884 | 2017 | 1823 | 1668 | 1845 | 
| 1857 | 1843 | 1602 | 1902 | 1636 | 2123 | 1878 | 2030 | 1825 | 1665 | 1862 | 
| 1858 | 1858 | 1597 | 1893 | 1626 | 2117 | 1875 | 2048 | 1826 | 1672 | 1870 | 
| 1859 | 1862 | 1591 | 1887 | 1616 | 2102 | 1874 | 2069 | 1827 | 1675 | 1879 | 
| 1860 | 1866 | 1596 | 1887 | 1605 | 2115 | 1875 | 2081 | 1821 | 1681 | 1888 | 
| 1861 | 1868 | 1595 | 1884 | 1595 | 2127 | 1876 | 2085 | 1816 | 1687 | 1893 | 
| 1862 | 1868 | 1595 | 1878 | 1599 | 2103 | 1875 | 2091 | 1810 | 1688 | 1890 | 
| 1863 | 1862 | 1598 | 1877 | 1596 | 2117 | 1874 | 2092 | 1799 | 1683 | 1894 | 
| 1864 | 1862 | 1600 | 1873 | 1592 | 2121 | 1870 | 2103 | 1793 | 1691 | 1886 | 
| 1865 | 1859 | 1600 | 1871 | 1588 | 2098 | 1871 | 2105 | 1783 | 1696 | 1875 | 
| 1866 | 1856 | 1596 | 1872 | 1588 | 2103 | 1865 | 2098 | 1773 | 1700 | 1867 | 
| 1867 | 1843 | 1598 | 1877 | 1595 | 2102 | 1865 | 2083 | 1762 | 1700 | 1860 | 
| 1868 | 1827 | 1599 | 1878 | 1596 | 2089 | 1862 | 2068 | 1750 | 1709 | 1851 | 
| 1869 | 1815 | 1600 | 1890 | 1604 | 2083 | 1865 | 2059 | 1728 | 1694 | 1845 | 
| 1870 | 1805 | 1599 | 1898 | 1612 | 2091 | 1866 | 2048 | 1724 | 1684 | 1836 | 
| 1871 | 1793 | 1601 | 1908 | 1621 | 2084 | 1865 | 2040 | 1717 | 1668 | 1844 | 
1401 rows × 10 columns
f,ax = plt.subplots(5,2,figsize = (32,20), sharex=True, sharey=True,)
ax[0,0].plot(data['p1'],color = 'red')
ax[1,0].plot(data['p2'],color = 'orange')
ax[2,0].plot(data['p3'],color = 'yellow')
ax[3,0].plot(data['p4'],color = 'green')
ax[4,0].plot(data['p5'],color = 'brown')
ax[0,1].plot(data['p6'],color = 'blue')
ax[1,1].plot(data['m1'],color = 'grey')
ax[2,1].plot(data['m2'],color = 'purple')
ax[3,1].plot(data['m3'],color = 'black')
ax[4,1].plot(data['m4'],color = 'black')
[<matplotlib.lines.Line2D at 0x7f90fd832950>]
%run detect_peaks.py
<matplotlib.figure.Figure at 0x7f90fdfa5450>
detect_peaks(data['p1'],show=True)
detect_peaks(data['p2'],show=True)
detect_peaks(data['p3'],show=True)
detect_peaks(data['p4'],show=True)
detect_peaks(data['p5'],show=True)
detect_peaks(data['p6'],show=True)
array([   5,    9,   15,   18,   22,   24,   37,   51,   62,   73,   79,
         85,   88,   91,   94,   97,  103,  112,  119,  122,  141,  160,
        162,  167,  177,  191,  200,  202,  204,  211,  213,  216,  229,
        240,  244,  247,  251,  253,  258,  269,  284,  286,  289,  293,
        307,  320,  323,  330,  334,  337,  350,  366,  369,  372,  374,
        385,  400,  404,  415,  432,  439,  441,  445,  448,  450,  470,
        474,  493,  495,  501,  507,  510,  520,  525,  527,  530,  536,
        539,  542,  547,  552,  555,  564,  566,  573,  577,  580,  590,
        603,  608,  610,  613,  617,  619,  622,  625,  632,  634,  640,
        643,  647,  651,  655,  660,  663,  687,  701,  706,  720,  736,
        742,  748,  752,  762,  771,  784,  786,  802,  819,  824,  830,
        839,  841,  850,  857,  860,  863,  867,  869,  876,  885,  887,
        889,  895,  907,  916,  920,  923,  926,  930,  941,  951,  958,
        962,  970,  973,  976,  981,  992,  995,  998, 1006, 1008, 1019,
       1022, 1027, 1029, 1033, 1039, 1042, 1051, 1061, 1075, 1078, 1081,
       1095, 1106, 1110, 1126, 1134, 1137, 1144, 1148, 1156, 1163, 1171,
       1174, 1179, 1187, 1190, 1199, 1203, 1209, 1211, 1215, 1217, 1224,
       1234, 1240, 1243, 1254, 1263, 1271, 1277, 1287, 1299, 1303, 1309,
       1316, 1322, 1325, 1328, 1331, 1334, 1337, 1346, 1350, 1355, 1361,
       1375, 1390, 1394, 1399])